LumaSense Turns 10!!!


August marked the 10th anniversary of LumaSense Technologies, Inc.®  Although it was originally founded in 2005, the companies that make LumaSense what it is today have over 50+ years of history and experience in the industries we serve. Many of you may have already seen the press release that tells our story.

Our headquarters office in Santa Clara held a lunch celebration that was kicked off by a speech from our CEO, Steve Abely. Steve discussed our history and honored members of our LumaSense family with substantial service to the company.

Our Human Resources team members Pat Winter and Erica Perez designed a special LumaSense version of bingo. Pictured below are some of the winners!

bingo_phillis Buettner

Bingo winner Phillis Buettner

bingo_Tom Doak

Bingo winner Tom Doak

Bingo_Dave Ducharme

Bingo winner Dave Ducharme


Bingo winner Rosa Veloz


Bingo winner Carola Herlich


Bingo winner Shelly Ong

After lunch and bingo, our executive team tried to pose for a group photo!Executive Team Photo Attempt

Click here to see more photos from the company celebration!

Atlas Inspection Technologies Pursues Growth in Oil & Gas


Atlas Inspection Technologies (Atlas) is a longtime LumaSense partner from the southwestern United States. Motivated by growth in the oil and gas sector, Atlas personnel visited LumaSense headquarters to receive product and service training on E2T and the new PULSAR 4.

Jesse Miller (left) from Atlas Inspection Technologies’ Denver office and Brad Roberts (right) from the Seattle office took a hands-on approach to learn more about the PULSAR 4 with E2T product manager Dave Ducharme (center).

Continue reading

LumaSense Pyrometer Launched into Space!


We are very excited to share that our Japanese partner Hazama Sokki notified us that our IGA 140-TV pyrometer launched into space!

The pyrometer launched on August 19th as part of the HTV5 cargo mission from the Tanegashima Space Center and arrived at the International Space Station (ISS) on August 24th! As part of Japan’s Aerospace Exploration Agency’s (JAXA) Electrostatic Levitation Furnace (ELF), the pyrometer will help scientists gather data on high temperature melts. ELF can use the zero-gravity environment to levitate a sample, control the position with electrostatic force, and then heat it to above 2000 °C.

Continue reading

Big Data – Resolving the Power Transformer Dilemma


North America relies on an aging electrical grid, some of which originated in the 1880s. This old and complex patchwork system of power generating plants, power lines, and substations operate cohesively to power homes and businesses.

Age is an important indicator of remaining life and structural strength. As equipment gets older, it breaks down causing an increasing number of power outages. A recent project investigated 2,300 “problem” transformers out of the total US installation base of 115,000 large power transformers. Of these 2,300, a total of 750 failed – for a failure rate of 32%! The industry cost of power interruptions caused by transformer failure can be considerable.

Transformers are the most important (and costly) equipment in an electrical power network. These aging pieces of the system put a difficult choice in front of the world’s electric utility companies: replace the critical transformers with new units or try to extend the working life of the existing fleet of older units.

Continue reading

Introducing the PULSAR 4 for Petrochemical Asset Monitoring

We are excited to share that we released the new PULSAR 4 at the ADIPEC show in Abu Dhabi today! The PULSAR 4 is the latest addition to our E2T line of petrochemical infrared sensors and it is our best PULSAR product to date for keeping valuable petrochemical assets performing and prevent unwarranted downtime!

What is it for?
Oil & Gas operations are heavily dependent on combustion based processes to supply the world’s growing energy needs. The PULSAR 4 is intended for monitoring the Refractory and Gas temperatures inside Sulfur Recovery Units, Sulfur Burners, and Thermal Oxidizer Furnaces where temperature control is crucial to efficient, safe, and clean operations.

Continue reading

Introducing the World’s First Industrial Grade Infrared Pyrometer with Thermal Imaging


Announcing the integrated ISR 6-TI Advanced pyrometer with thermal imaging solution for increased control and optimization of manufacturing processes in metals, glass, and other materials industries! The ISR 6-TI Advanced is a true break-through by combining pyrometry with infrared imaging technology to produce “Relative” thermal images. “Relative” thermal images are produced by measuring the temperature of the center spot with a ratio pyrometer and using an infrared filter to show an auto-calibrated thermal image based on the highly accurate ratio pyrometer temperature reading.

Continue reading

Keeping Transformers Online

Transformers are getting older and electricity demands are expected to increase by 19% over the next 10 years. Monitoring transformers and keeping them online is essential to meeting increasing demands with older equipment.

Traditionally, transformers are monitored with manual methods such as manual samples and manual analysis. Using sensors with intelligence allows utility managers to monitor transformers daily from afar. Daily samples can help managers understand how their transformers are performing with automatic data analysis. Learn more in the infographic below!

Continue reading

Use your Thermal Vision!

Thermal Imaging Blog Post Header


Superman has x-ray vision, but you have Thermal Vision! However, while seeing things real-time is great for detecting anomalies immediately, it does little to predict them. For that, you need history. History helps predict the future, and when it comes to data, collecting and analyzing thermal imaging data can be overwhelming. Automating this process using thermal imaging software can help take the headache out of trying to understand the data the thermal imaging cameras are collecting. See how we do it in the infographic below.

Continue reading

Monitoring Flat Glass Production Temperatures

Glass Production

Glass production can be traced back to before the Roman civilization. The Latin term “glesum” can be roughly translated as “transparent lustrous substance”. Flat glass has changed very little since its inception as blown cylinders flattened out and the majority of today’s flat glass (about 90%) is produced using the float glass (Pilkington) process that was developed in the 1950s in England.

The global flat glass market was estimated to be over $30 billion in 2012, driven largely by demands of construction and automotive glass sectors. Current demand by China, North America, and Europe account for over 70% of products delivered. Future demand is expected to increase steadily as emerging markets develop.

To sustain these demands, there are over 200 float glass production plants worldwide. They produce over 60 million tons (about 7.5 billion square meters) of glass annually! But float glass production can be expensive due to the high cost of transportation and energy required for glass melting (often up to 1700 °C). In order to reduce costs, these plants tend to be regionally distributed to minimize the high costs of transportation and tend to operate continuously to minimize losses.

Continue reading